尽管使用多个无人机(UAV)具有快速自主探索的巨大潜力,但它的关注程度很少。在本文中,我们提出了赛车手,这是一种使用分散无人机的舰队的快速协作探索方法。为了有效派遣无人机,使用了基于在线HGRID空间分解的成对交互。它可确保仅使用异步和有限的通信同时探索不同的区域。此外,我们优化了未知空间的覆盖路径,并通过电容的车辆路由问题(CVRP)配方平衡分区到每个UAV的工作负载。鉴于任务分配,每个无人机都会不断更新覆盖路径,并逐步提取关键信息以支持探索计划。分层规划师可以找到探索路径,完善本地观点并生成序列的最小时间轨迹,以敏捷,安全地探索未知空间。对所提出的方法进行了广泛的评估,显示出较高的勘探效率,可伸缩性和对有限交流的鲁棒性。此外,我们第一次与现实世界中的多个无人机进行了完全分散的协作探索。我们将作为开源软件包发布实施。
translated by 谷歌翻译
近年来,移动机器人变得雄心勃勃,并在大规模场景中部署。作为对环境的高级理解,稀疏的骨骼图对更有效的全球计划有益。当前,现有的骨骼图生成解决方案受到了几个主要局限性,包括对不同地图表示的适应性不佳,对机器人检查轨迹的依赖和高计算开销。在本文中,我们提出了一种有效且柔性的算法,该算法生成轨迹独立的3D稀疏拓扑骨架图,捕获了自由空间的空间结构。在我们的方法中,采用了有效的射线采样和验证机制来找到独特的自由空间区域,这有助于骨架图顶点,并且在相邻的顶点作为边缘之间具有遍历性。周期形成方案还用于维持骨架图紧凑度。基准测试与最先进的作品的比较表明,我们的方法在较短的时间内生成稀疏的图形,从而提供了高质量的全球计划路径。在现实世界中进行的实验进一步验证了我们在现实情况下我们方法的能力。我们的方法将成为开源以使社区受益的开源。
translated by 谷歌翻译
自我关注架构被出现为最近提高视力任务表现的最新进步。手动确定自我关注网络的架构依赖于专家的经验,无法自动适应各种场景。同时,神经结构搜索(NAS)显着推出了神经架构的自动设计。因此,需要考虑使用NAS方法自动发现更好的自我关注架构。然而,由于基于细胞的搜索空间统一和缺乏长期内容依赖性,直接使用现有的NAS方法来搜索关注网络是具有挑战性的。为了解决这个问题,我们提出了一种基于全部关注的NAS方法。更具体地,构造阶段明智的搜索空间,其允许为网络的不同层采用各种关注操作。为了提取全局特征,提出了一种使用上下文自动回归来发现全部关注架构的自我监督的搜索算法。为了验证所提出的方法的功效,我们对各种学习任务进行了广泛的实验,包括图像分类,细粒度的图像识别和零拍摄图像检索。经验结果表明,我们的方法能够发现高性能,全面关注架构,同时保证所需的搜索效率。
translated by 谷歌翻译
去中心化的国家估计是GPS贬低的地区自动空中群体系统中最基本的组成部分之一,但它仍然是一个极具挑战性的研究主题。本文提出了Omni-swarm,一种分散的全向视觉惯性-UWB状态估计系统,用于解决这一研究利基市场。为了解决可观察性,复杂的初始化,准确性不足和缺乏全球一致性的问题,我们在Omni-warm中引入了全向感知前端。它由立体宽型摄像机和超宽带传感器,视觉惯性探测器,基于多无人机地图的本地化以及视觉无人机跟踪算法组成。前端的测量值与后端的基于图的优化融合在一起。所提出的方法可实现厘米级的相对状态估计精度,同时确保空中群中的全球一致性,这是实验结果证明的。此外,在没有任何外部设备的情况下,可以在全面的无人机间碰撞方面支持,表明全旋转的潜力是自动空中群的基础。
translated by 谷歌翻译
精确预测物理性质对于发现和设计新材料至关重要。机器学习技术引起了材料科学界的重大关注,以实现大规模筛选的潜力。图表卷积神经网络(GCNN)是最成功的机器学习方法之一,因为它在描述3D结构数据时的灵活性和有效性。大多数现有的GCNN模型集中在拓扑结构上,但过度简化了三维几何结构。然而,在材料科学中,原子的3D空间分布对于确定原子状态和内部力是至关重要的。本文提出了一种具有新型卷积机制的自适应GCNN,其同时在三维空间中同时模拟所有邻的原子之间的原子相互作用。我们将拟议模型应用于预测材料特性的两个明显挑战的问题。首先是亨利在金属 - 有机框架(MOF)中的气体吸附恒定,这是众所周知的,因为它对原子配置的高敏感性。第二种是固态晶体材料中的离子电导率,这是由于少数可用于训练的标记数据而困难。新模型优于两个数据集上的现有基于图形的模型,这表明临界三维几何信息确实捕获。
translated by 谷歌翻译
To generate high quality rendering images for real time applications, it is often to trace only a few samples-per-pixel (spp) at a lower resolution and then supersample to the high resolution. Based on the observation that the rendered pixels at a low resolution are typically highly aliased, we present a novel method for neural supersampling based on ray tracing 1/4-spp samples at the high resolution. Our key insight is that the ray-traced samples at the target resolution are accurate and reliable, which makes the supersampling an interpolation problem. We present a mask-reinforced neural network to reconstruct and interpolate high-quality image sequences. First, a novel temporal accumulation network is introduced to compute the correlation between current and previous features to significantly improve their temporal stability. Then a reconstruct network based on a multi-scale U-Net with skip connections is adopted for reconstruction and generation of the desired high-resolution image. Experimental results and comparisons have shown that our proposed method can generate higher quality results of supersampling, without increasing the total number of ray-tracing samples, over current state-of-the-art methods.
translated by 谷歌翻译
Representing and synthesizing novel views in real-world dynamic scenes from casual monocular videos is a long-standing problem. Existing solutions typically approach dynamic scenes by applying geometry techniques or utilizing temporal information between several adjacent frames without considering the underlying background distribution in the entire scene or the transmittance over the ray dimension, limiting their performance on static and occlusion areas. Our approach $\textbf{D}$istribution-$\textbf{D}$riven neural radiance fields offers high-quality view synthesis and a 3D solution to $\textbf{D}$etach the background from the entire $\textbf{D}$ynamic scene, which is called $\text{D}^4$NeRF. Specifically, it employs a neural representation to capture the scene distribution in the static background and a 6D-input NeRF to represent dynamic objects, respectively. Each ray sample is given an additional occlusion weight to indicate the transmittance lying in the static and dynamic components. We evaluate $\text{D}^4$NeRF on public dynamic scenes and our urban driving scenes acquired from an autonomous-driving dataset. Extensive experiments demonstrate that our approach outperforms previous methods in rendering texture details and motion areas while also producing a clean static background. Our code will be released at https://github.com/Luciferbobo/D4NeRF.
translated by 谷歌翻译
Forecasts by the European Centre for Medium-Range Weather Forecasts (ECMWF; EC for short) can provide a basis for the establishment of maritime-disaster warning systems, but they contain some systematic biases.The fifth-generation EC atmospheric reanalysis (ERA5) data have high accuracy, but are delayed by about 5 days. To overcome this issue, a spatiotemporal deep-learning method could be used for nonlinear mapping between EC and ERA5 data, which would improve the quality of EC wind forecast data in real time. In this study, we developed the Multi-Task-Double Encoder Trajectory Gated Recurrent Unit (MT-DETrajGRU) model, which uses an improved double-encoder forecaster architecture to model the spatiotemporal sequence of the U and V components of the wind field; we designed a multi-task learning loss function to correct wind speed and wind direction simultaneously using only one model. The study area was the western North Pacific (WNP), and real-time rolling bias corrections were made for 10-day wind-field forecasts released by the EC between December 2020 and November 2021, divided into four seasons. Compared with the original EC forecasts, after correction using the MT-DETrajGRU model the wind speed and wind direction biases in the four seasons were reduced by 8-11% and 9-14%, respectively. In addition, the proposed method modelled the data uniformly under different weather conditions. The correction performance under normal and typhoon conditions was comparable, indicating that the data-driven mode constructed here is robust and generalizable.
translated by 谷歌翻译
Low-dose computed tomography (CT) plays a significant role in reducing the radiation risk in clinical applications. However, lowering the radiation dose will significantly degrade the image quality. With the rapid development and wide application of deep learning, it has brought new directions for the development of low-dose CT imaging algorithms. Therefore, we propose a fully unsupervised one sample diffusion model (OSDM)in projection domain for low-dose CT reconstruction. To extract sufficient prior information from single sample, the Hankel matrix formulation is employed. Besides, the penalized weighted least-squares and total variation are introduced to achieve superior image quality. Specifically, we first train a score-based generative model on one sinogram by extracting a great number of tensors from the structural-Hankel matrix as the network input to capture prior distribution. Then, at the inference stage, the stochastic differential equation solver and data consistency step are performed iteratively to obtain the sinogram data. Finally, the final image is obtained through the filtered back-projection algorithm. The reconstructed results are approaching to the normal-dose counterparts. The results prove that OSDM is practical and effective model for reducing the artifacts and preserving the image quality.
translated by 谷歌翻译
We propose an analysis in fair learning that preserves the utility of the data while reducing prediction disparities under the criteria of group sufficiency. We focus on the scenario where the data contains multiple or even many subgroups, each with limited number of samples. As a result, we present a principled method for learning a fair predictor for all subgroups via formulating it as a bilevel objective. Specifically, the subgroup specific predictors are learned in the lower-level through a small amount of data and the fair predictor. In the upper-level, the fair predictor is updated to be close to all subgroup specific predictors. We further prove that such a bilevel objective can effectively control the group sufficiency and generalization error. We evaluate the proposed framework on real-world datasets. Empirical evidence suggests the consistently improved fair predictions, as well as the comparable accuracy to the baselines.
translated by 谷歌翻译